### Welcome!

# Using Models to Identify Needs & Solutions

Presented by:

Scott Thomson, P.E.

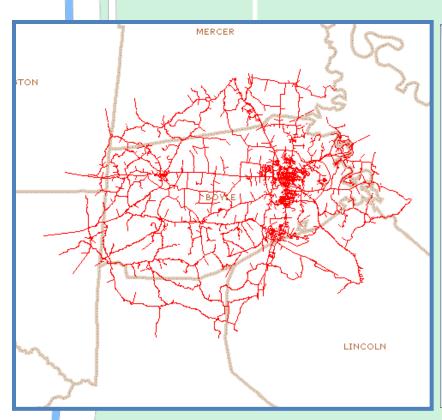
Bob Nunley, P.E.

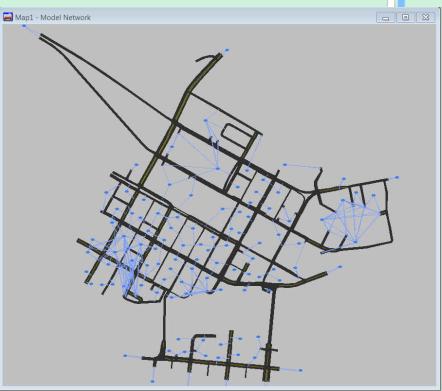
#### Who is the Audience?

- Designers & Planners
- Decision Makers
- Modelers

 When we say we model, some think of a totally different kind of modeler....






## When we say model we're talking about...

Static Area Models

Dynamic Simulation Models





# Simulation Models can be 3-D, too



# Here are some of Vehicle inputs

| -V   | ek    | iicl  | e   | CI  | ass | T     | at | de  | 9 |
|------|-------|-------|-----|-----|-----|-------|----|-----|---|
| 1000 | 10000 | 0.500 | 560 | 80. | 200 | 22,00 | Q, | 225 | к |

| Percentage (%) |   | Name | Description |     |                                   |
|----------------|---|------|-------------|-----|-----------------------------------|
| 1              |   | 5.3  | 26.00       | PC1 | High performance passenger cars   |
| 2              | 1 | 33.8 | 30.70       | PC2 | Middle performance passenger cars |
| 3              |   | 7.1  | 26.00       | PC3 | Low performance passenger cars    |
| 4              |   | 44.3 | 16.00       | PU  | Pickup trucks or utility vehicles |
| 5              |   | 5.5  | 0.00        | ST  | Single-unit trucks                |
| 6              |   | 1.6  | 0.00        | TT  | Trailer trucks                    |
| 7              |   | 0.1  | 1.00        | В   | Buses                             |
| 8              |   | 0.0  | 0.00        | AB  | Articulated transit buses         |
| 9              |   | 0.0  | 0.00        | Ť   | Trains                            |
| 10             |   | 2.2  | 0.30        | M   | Motorcycles                       |

| Parameters Simulation 30 Tools | 0  |
|--------------------------------|----|
| General                        | 7  |
| Vehicle Fleet                  | 8  |
| Route Choice                   | 9  |
|                                | 10 |
| Driver Behavior                |    |
| Response to Traffic Control    |    |
| Bicycles and Motorcycles       |    |
| Parking                        |    |
| Pedestrian Crosswalk           |    |
| Mesoscopic/Macroscopic         |    |
| Capacity and Delay             |    |
| HCM 2010 Level of Service      |    |
| Parameter Marker Toolbox       |    |
| Edit Road Classes              |    |
| Functional Type Classification |    |
| Traffic Control Defaults       |    |
| Controller Templates           |    |

Utilities

| Class       | Mass (lbs) | Power (hp) | Toll class             | Lb/HP |
|-------------|------------|------------|------------------------|-------|
| <b>9</b> C1 | 3417.2     | 214.6      | Non-commercial 2 Axles | 15.9  |
| PC2         | 3417.2     | 187.7      | Non-commercial 2 Axles | 18.2  |
| PC3         | 3417.2     | 174.3      | Non-commercial 2 Axles | 19.6  |
| PU          | 4188.8     | 174.3      | Commercial 2 Axles     | 24.0  |
| ST          | 9920.8     | 214.6      | Commercial 3+ Axles    | 46.2  |
| TT          | 17637.0    | 214.6      | Commercial 3+ Axles    | 82.2  |
| В           | 11023.1    | 241.4      | Commercial 2 Axles     | 45.7  |
| AB          | 17637.0    | 268.2      | Commercial 3+ Axles    | 65.8  |
| Т           | 88184.9    | 2011.5     | Commercial 3+ Axles    | 43.8  |
| М           | 440.9      | 134,1      | Non-commercial 2 Axles | 3.3   |
| BK          | 198.4      | 0.2        | Non-commercial 2 Axles | 990.0 |

#### Here are some Driver Inputs

Parameters Simulation 3D Tools Wind

General...

Vehicle Fleet...

Route Choice...

Driver Behavior...

Response to Traffic Control...

Bicycles and Motorcycles...

Parking...

Pedestrian Crosswalk...

Mesoscopic/Macroscopic...

Capacity and Delay...

HCM 2010 Level of Service...

Parameter Marker Toolbox

Edit Road Classes...

Functional Type Classification...

Traffic Control Defaults...

Controller Templates...

Utilities

Default Distribution of Desired Speed

| Driver Population (%) | Deviation from Speed Limit (mph) |
|-----------------------|----------------------------------|
| 2.0                   | -10.0                            |
| 5.0                   | +5.0                             |
| 15.0                  | 0.0                              |
| 25.0                  | 5.0                              |
| 25.0                  | 10.0                             |
| 15.0                  | 15.0                             |
| 10.0                  | 20.0                             |
| 3.0                   | 25.0                             |

Stop Sime at Stop Signs

| With competing traffic (sec) | No competing traffic (sec) | Percentage (%) |
|------------------------------|----------------------------|----------------|
| 0.5                          | 0.0                        | 45.0           |
| 0.7                          | 0.3                        | 25.0           |
| 1.0                          | 0.5                        | 15.0           |
| 1,3                          | 0.7                        | 10.0           |
| 1.5                          | 1.0                        | 5.0            |

Parameters

Vehicle search distance (ft)

Stop distance (ft)

Stop speed (fps)

160.0 5.0 10.0

十十〇 4 國

### Assessing validity

Criteria

#### Accomplished modelers (n=15)

#### **Decision-makers (n=15)**

| Criteria                    | # mentions |
|-----------------------------|------------|
| Replicates traffic counts   | 9          |
| Theoretically plausible     | 5          |
| Established practice        | 5          |
| Matches calibration targets | 5          |
| Software verification       | 4          |
| Sensitivity testing         | 2          |
| Market understanding        | 2          |
| Parallel studies            | 2          |
| Peer review panel           | 2          |

| Ontena                  | # 111611110115 |
|-------------------------|----------------|
| Independent review      | 11             |
| Confidence in analyst   | 11             |
| Comparable forecasts    | 10             |
| Squares with intuition  | 8              |
| Free from obvious flaws | 8              |
| Agency/investor buy-in  | 6              |
| Effective presentation  | 6              |
| Established practice    | 3              |
| Aligns with theory      | 2              |

# mentions

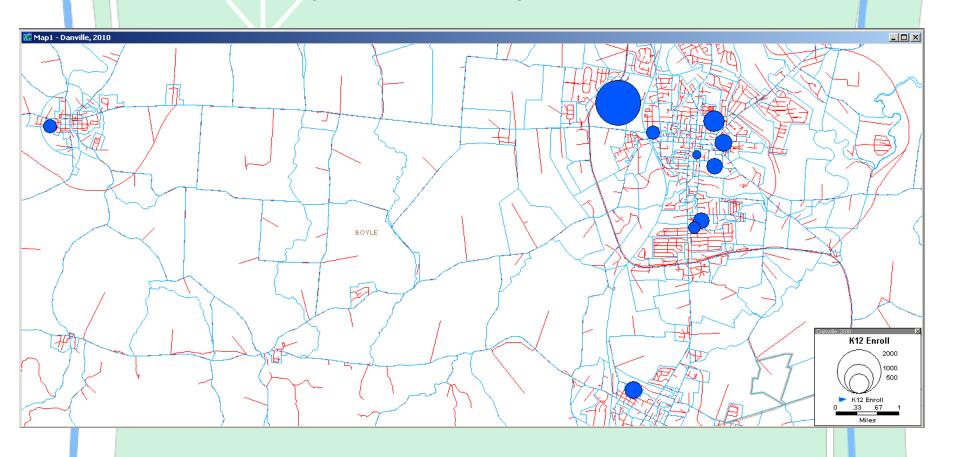
#### Transparency



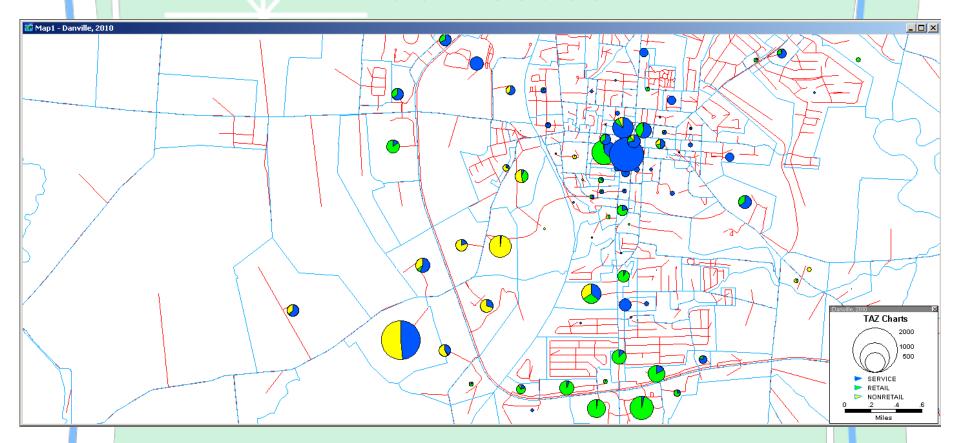




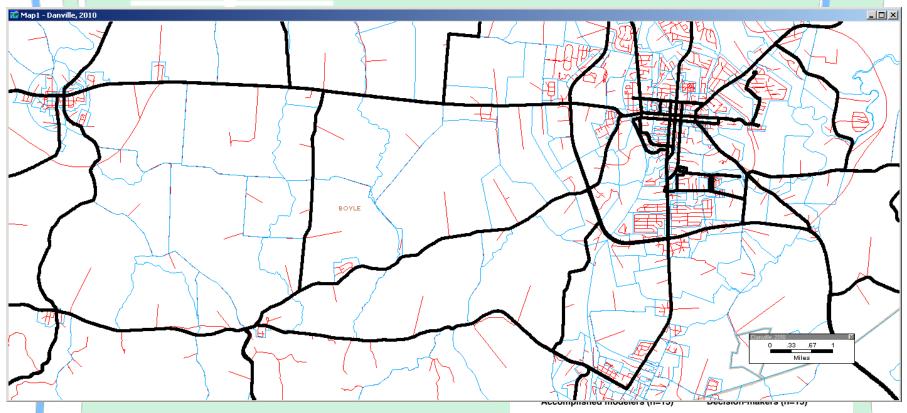
Document, document


## Data is our engine




# Of course the Ferrari, but we might be OK with a Chevy...




### **Boyle County Schools**



#### Businesses



## **Speed Data**



| Criteria                    | # mentions |
|-----------------------------|------------|
| Replicates traffic counts   | 9          |
| Theoretically plausible     | 5          |
| Established practice        | 5          |
| Matches calibration targets | 5          |
| Software verification       | 4          |
| Sensitivity testing         | 2          |
| Market understanding        | 2          |
| Parallel studies            | 2          |
| Peer review panel           | 2          |

| Criteria                | " montions |   |
|-------------------------|------------|---|
| Independent review      | 11         |   |
| Confidence in analyst   | 11         |   |
| Comparable is           | 10         |   |
| Squares with intuition  | 8          |   |
| Free from obvious flaws | 8          |   |
| Agency/investor buy-in  | 6          |   |
| Effective presentation  | 6          |   |
| Established practice    | 3          | 1 |
| Aligns with theory      | 2          |   |
|                         |            |   |

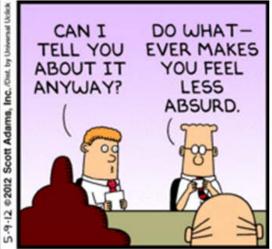
# So Scott, what models should we use to Identify Needs & Solutions?

#### It depends on:

- What is most important issues to address
- The budget
- The time deadline.

#### Static Models

- Route Selection-Travel time sensitive models
- Tolling Cost sensitive models
- Road Closure- Regional area models
- Projects where congestion is not an issue


#### Micro-Simulation

- One-way to Two-way conversions
- Interchange Designs
- Intersection Designs
- Testing operational changes
- Congested Corridors

### Lastly, a story....







I hope you have
a new
appreciation for Dilbert.